The Roles of UmuD in Regulating Mutagenesis

نویسندگان

  • Jaylene N. Ollivierre
  • Jing Fang
  • Penny J. Beuning
چکیده

All organisms are subject to DNA damage from both endogenous and environmental sources. DNA damage that is not fully repaired can lead to mutations. Mutagenesis is now understood to be an active process, in part facilitated by lower-fidelity DNA polymerases that replicate DNA in an error-prone manner. Y-family DNA polymerases, found throughout all domains of life, are characterized by their lower fidelity on undamaged DNA and their specialized ability to copy damaged DNA. Two E. coli Y-family DNA polymerases are responsible for copying damaged DNA as well as for mutagenesis. These DNA polymerases interact with different forms of UmuD, a dynamic protein that regulates mutagenesis. The UmuD gene products, regulated by the SOS response, exist in two principal forms: UmuD(2), which prevents mutagenesis, and UmuD(2)', which facilitates UV-induced mutagenesis. This paper focuses on the multiple conformations of the UmuD gene products and how their protein interactions regulate mutagenesis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dominant negative umuD mutations decreasing RecA-mediated cleavage suggest roles for intact UmuD in modulation of SOS mutagenesis.

The products of the SOS-regulated umuDC operon are required for most UV and chemical mutagenesis in Escherichia coli. The UmuD protein shares homology with a family of proteins that includes LexA and several bacteriophage repressors. UmuD is posttranslationally activated for its role in mutagenesis by a RecA-mediated proteolytic cleavage that yields UmuD'. A set of missense mutants of umuD was ...

متن کامل

RecA protein-dependent cleavage of UmuD protein and SOS mutagenesis.

Induction of the Escherichia coli SOS system increases the ability of the cell to perform DNA repair and mutagenesis. Products of the recA and umuD,C genes are required for mutagenesis induced by radiation and many chemicals. Transcription of the SOS genes including recA and umuD,C is repressed by a repressor, LexA protein, and is derepressed by the proteolytic cleavage of LexA facilitated by R...

متن کامل

Regulation of E . coli SOS Mutagenesis by Dimeric Intrinsically Disordered umuD Gene Products

Products of the umuD gene in E. coli are involved in regulating the timing of error-free DNA repair processes and mutagenic translesion DNA synthesis (TLS) during the SOS response to DNA damage. Homodimeric UmuD2 is upregulated early during the SOS response, and a slow post-translational autocleavage process removes the N-terminal 24 amino acids of each UmuD monomer. The remaining C-terminal fr...

متن کامل

Targeting of the UmuD, UmuD', and MucA' mutagenesis proteins to DNA by RecA protein.

In addition to its critical role in genetic recombination, the Escherichia coli RecA protein plays a pivotal role in SOS-induced mutagenesis. This role can be separated genetically into three steps: (i) depression of the SOS regulon by mediating the posttranslational cleavage of the LexA repressor, (ii) activation of UmuD'-like proteins by mediating cleavage of the UmuD-like proteins, and (iii)...

متن کامل

The UmuD' protein filament and its potential role in damage induced mutagenesis.

BACKGROUND Damage induced 'SOS mutagenesis' may occur transiently as part of the global SOS response to DNA damage in bacteria. A key participant in this process is the UmuD protein, which is produced in an inactive from but converted to the active form, UmuD', by a RecA-mediated self-cleavage reaction. UmuD', together with UmuC and activated RecA (RecA*), enables the DNA polymerase III holoenz...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2010  شماره 

صفحات  -

تاریخ انتشار 2010